
A rticle

What's New in Spring 2.5: Part 1
Posted by Mark Fisher on Nov 19, 2007 09:00 AM
Community Java Topics Web Frameworks Tags Spring

Introduction

Since its inception the Spring Framework has consistently focused on the goal of simplify ing enterprise application development while prov iding powerful,
non-invasive solutions to complex problems. W ith the release of Spring 2.0 just over a year ago, these themes advanced to a new level. XML Schema support
and custom namespaces reduce the amount of XML-based configuration. Developers using Java 5 or greater are able to take advantage of Spring libraries that
exploit new language features such as generics and annotations. The close integration with AspectJ's expression language enables the non-invasive addition of
behav ior across well-defined groupings of Spring-managed objects.

RelatedVendorContent

Application Performance Management Trends - Survey 2009 & Nintendo W ii Contest

JIRA Issue & Bug Tracker Latest Features Tour

Agile Development: A Manager's Roadmap for Success

Download the Free Adobe® Flex® Builder 3 Trial

Adobe® Rich Internet Application Project Portal

Related Sponsor

The Adobe Flash Platform prov ides every thing you need to develop applications, content and v ideo across operating systems and dev ices.

The newly released Spring 2.5 continues this trend by offering further simplifications and powerful new features especially for those who are using Java
5 or greater. These features include annotation-driven dependency injection, auto-detection of Spring components on the classpath using annotations
rather than XML for metadata, annotation support for lifecycle methods, a new web controller model for mapping requests to annotated methods, support for
Junit 4 in the test framework , new additions to the Spring XML namespaces, and more.

This article is the first of a three-part series exploring these new features. The current article will focus on simplified configuration and new annotation-based
functionality in the core of the Spring application context. The second article will cover new features available in the web-tier, and the final article will highlight
additional features available for integration and testing. Most of the examples depicted within this article series are based upon the Spring PetC linic sample
application. That sample has recently been refactored to serve as a showcase of the latest Spring functionality and is included within the Spring 2.5 distribution
available at the Spring Framework Download page. View the 'readme.txt' file within the 'samples/petclinic' directory for instructions on building and deploy ing the
PetC linic application. Experimenting with the showcased features in the PetC linic application is probably the best way to master the new techniques discussed
here.

Spring support for JSR-250 annotations

The 'Common Annotations for the Java Platform' were introduced with Java EE version 5 and are also included out-of-the-box beginning with Java SE version 6.
In May 2006, BEA Systems announced their collaboration with Interface21 on a project called Pitchfork that prov ided a Spring-based implementation of the Java
EE 5 programming model including support for JSR-250 annotations and EJB 3 annotations (JSR-220) for injection, interception, and transactions. As of version
2.5, the Spring Framework core now prov ides support for the following JSR-250 annotations:

@Resource
@PostConstruct
@PreDestroy

W ith Spring these annotations are supported in any env ironment - with or without an Application Server - and even for integration testing. Enabling this
support is just a matter of registering a single Spring post-processor:

<bean class="org.springframework.context.annotation.CommonAnnotationBeanPostProcessor"/>

The @Resource Annotation

The @Resource annotation enables dependency injection of a "named resource". W ithin a Java EE application, that typically translates to an object bound to
the JNDI context. Spring does support this usage of @Resource for resolv ing objects through JNDI lookups, but by default the Spring-managed object whose
"bean name" matches the name prov ided to the @Resource annotation will be injected. In the following example, Spring would pass a reference to the Spring-
managed object with a bean name of "dataSource" to the annotated setter method.

@Resource(name="dataSource")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
}

It is also possible to annotate a field directly with @Resource. By not exposing a setter method, the code is more concise and also prov ides the additional benefit
of enforcing immutability . As demonstrated below, the @Resource annotation does not even require an explicit String value. When none is prov ided, the name
of the field will be used as a default.

@Resource
private DataSource dataSource; // inject the bean named 'dataSource'

When applied to a setter method, the default name would be derived from the corresponding property . In other words, a method named 'setDataSource'
would also resolve to the property named 'dataSource'.

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

1 de 10 19/08/09 11:21

private DataSource dataSource;
@Resource
public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
}

When using @Resource without an explicitly prov ided name, if no Spring-managed object is found for the default name, the injection mechanism will fallback to
a type-match. If there is exactly one Spring-managed object matching the dependency 's type, then it will be injected. This feature can be disabled by setting the
'fallbackToDefaultTypeMatch' property of the CommonA nnotationBeanPostProcessor to 'false' (it is 'true' by default).

<bean class="org.springframework.context.annotation.CommonAnnotationBeanPostProcessor">
 <property name="fallbackToDefaultTypeMatch" value="false"/>
</bean>

As mentioned above, Spring does prov ide support for JNDI-lookups when resolv ing dependencies that are annotated with @Resource. To force direct JNDI
lookups for all dependencies annotated with @Resource, set the 'alwaysUseJndiLookup' flag of the CommonA nnotationBeanPostProcessor to 'true' (it is
'false' by default).

<bean class="org.springframework.context.annotation.CommonAnnotationBeanPostProcessor">
 <property name="alwaysUseJndiLookup" value="true"/>
</bean>

A lternatively , to enable lookup based upon global JNDI names specified as 'resource-ref-mappings', prov ide the 'mappedName' attribute within the @Resource
annotation. Even when the target object is actually a JNDI resource, it is the recommended practice to still reference a Spring-managed object thereby prov iding
a level of indirection and hence a lesser degree of coupling. W ith the namespace additions available since Spring 2.0, a bean definition that delegates to Spring for
handling the JNDI lookup is triv ial and concise:

<jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/petclinic"/>

The advantage of this approach is that the level of indirection prov ides for greater deployment flexibility . For example, a standalone system test env ironment
should not require a JNDI registry . In such a case, the following alternate bean definition could be prov ided within the system test configuration:

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"/>

As an aside, in the example above the actual JDBC connection properties are resolved from a properties file where the keys match the prov ided ${placeholder}
tokens. This is accomplished by registering a Spring BeanFactoryPostProcessor implementation called PropertyPlaceholderConfigurer. This is a commonly
used technique for externalizing those properties - often env ironment-specific ones - that may need to change more frequently than the rest of the configuration.

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="location" value="classpath:jdbc.properties"/>
</bean>

With the addition of the 'context' namespace in Spring 2.5, a more concise alternative for the property placeholder configuration is available:

<context:property-placeholder location="classpath:jdbc.properties"/>

Lifecycle Annotations: @PostConstruct and @PreDestroy

The @PostConstruct and @PreDestroy annotations can be used to trigger Spring initialization and destruction callbacks respectively . This feature extends but
does not replace the two options for prov iding such callbacks in Spring versions prior to 2.5. The first option is to implement one or both of Spring's
InitializingBean and DisposableBean interfaces. Each of those interfaces requires a single callback method implementation (afterPropertiesSet() and
destroy() respectively). The interface-based approach takes advantage of Spring's ability to automatically recognize any Spring managed object implementing
those interfaces and therefore requires no additional configuration. On the other hand, a key goal of Spring is to be as non-invasive as possible. Therefore
instead of implementing Spring-specific interfaces, many Spring users have taken advantage of the second option which is to prov ide their own initialization and
destruction methods. While less invasive, the drawback of that approach is that it requires explicit declaration of 'init-method' and/or 'destroy-method'
attributes on the 'bean' element. That explicit configuration is sometimes necessary , such as when the callbacks need to be invoked on code that is outside of the
developer's control. The PetC linic application demonstrates this scenario. When it is run with its JDBC configuration, a third party DataSource is used, and a
'destroy-method' is declared explicitly . A lso notice that the standalone connection-pooling DataSource is yet another deployment option for the 'dataSource'
and does not require any code changes.

<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"/>

With Spring 2.5, if an object requires invocation of a callback method upon initialization, that method can be annotated with the @PostConstruct annotation.
For example, imagine a background task that needs to start polling a file directory upon startup.

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

2 de 10 19/08/09 11:21

public class FilePoller {

 @PostConstruct
 public void startPolling() {
 ...
 }
 ...
}

Similarly , a method annotated with @PreDestroy on a Spring-managed object will be invoked when the application context hosting that object is closed.

public class FilePoller {

 @PreDestroy
 public void stopPolling() {
 ...
 }
 ...
}

With the addition of support for the JSR-250 annotations, Spring 2.5 now combines the advantages of its two prev ious lifecycle method alternatives. Adding
@PostConstruct and @PreDestroy as method-level annotations is sufficient for triggering the callbacks within a Spring managed context. In other words, no
additional XML-based configuration is necessary . A t the same time, the annotations are part of the Java language itself (and even included within Java SE as of
version 6) and thus require no Spring-specific imports. The annotations have the added benefit of indicating semantics that should be understood within other
env ironments, and over time Java developers can likely expect to see these annotations used more frequently within third-party libraries. F inally , one interesting
consequence of the annotation-based lifecycle callbacks is that more than one method may carry either annotation, and all annotated methods will be invoked

To enable all of the behav ior as described above for the @Resource, @PostConstruct, and @PreDestroy annotations, prov ide a single bean definition for
Spring's CommonA nnotationBeanPostProcessor as shown prev iously . An even more concise option is possible with the new 'context' namespace in 2.5:

<context:annotation-config/>

Including that single element will not only register a CommonA nnotationBeanPostProcessor, but it will also enable the autowiring behav ior as described in
the section that follows. The CommonA nnotationBeanPostProcessor even prov ides support for @WebServiceRef and @EJB annotations. These w ill be
covered in the third article of this series along with other new Spring 2.5 features for enterprise integration.

Fine-Grained Autowiring with Annotations

Documentation covering Spring's support for autowiring has often been accompanied with caveats due to the coarse granularity of the autowiring mechanism.
Prior to Spring 2.5, autowiring could be configured for a number of different approaches: constructor, setters by type, setters by name, or autodetect (where
Spring chooses to autowire either a constructor or setters by type). These various options do offer a large degree of flexibility , but none of them offer very
fine-grained control. In other words, prior to Spring 2.5, it has not been possible to autowire a specific subset of an object's setter methods or to autowire some
of its properties by type and others by name. As a result, many Spring users have recognized the benefits of autowiring for prototyping and testing, but when it
comes to maintaining and supporting systems in production, most agree that the added verbosity of explicit configuration is well worth the clarification it affords.

However, Spring 2.5 dramatically changes the landscape. As described above, the autowiring choices have now been extended with support for the JSR-250
@Resource annotation to enable autowiring of named resources on a per-method or per-field basis. However, the @Resource annotation alone does have
some limitations. Spring 2.5 therefore introduces an @A utowired annotation to further increase the level of control. To enable the behav ior described in this
section, register a single bean definition:

<bean class="org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor"/>

A lternatively , the 'context' namespace prov ides a more concise alternative as shown prev iously . This will enable both post-processors discussed in this article
(A utowiredA nnotationBeanPostProcessor and CommonA nnotationBeanPostProcessor) as well as the annotation-based post-processors that were
introduced in Spring 2.0: RequiredA nnotationBeanPostProcessor and PersistenceA nnotationBeanPostProcessor.

<context:annotation-config/>

With the @A utowired annotation, it is possible to inject dependencies that match by type. This behav ior is enabled for fields, constructors, and methods. In
fact, autowired methods do not have to be 'setter' methods and can even accept multiple parameters. The following is perfectly acceptable:

@Autowired
public void setup(DataSource dataSource, AnotherObject o) { ... }

By default, dependencies marked with the @A utowired annotation are treated as required. However, it is also possible to declare any of them as optional by
setting the 'required' attribute to 'false'. In the following example, DefaultStrategy will be used if no Spring-managed object of type SomeStrategy is found
within the context.

@Autowired(required=false)
private SomeStrategy strategy = new DefaultStrategy();

Autowiring by type can obv iously result in ambiguities when the Spring context contains more than one object of the expected type. By default, the autowiring
mechanism will fail if there is not exactly one bean for a required dependency . Likewise for any optional properties, it will fail if more than one candidate is
available (if optional and zero candidates are available, then it will simply sk ip the property). There are a number of configuration options for avoiding these
conflicts.

When there is one primary instance of a given type within the context, the bean definition for that type should contain the 'primary' attribute. This approach
works well when other instances may be available in the context, yet those non-primary instances are always explicitly configured.

<bean id="dataSource" primary="true" ... />

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

3 de 10 19/08/09 11:21

When more control is needed, any autowired field, constructor argument, or method parameter may be further annotated with a @Qualifier annotation. The
qualifier may contain a String value in which case Spring will attempt to match by name.

@Autowired
@Qualifier("primaryDataSource")
private DataSource dataSource;

The main reason that @Qualifier exists as a separate annotation is so that it can be applied at the level of a constructor argument or method parameter while the
@A utowired annotation is available on the constructor or method itself.

@Autowired
public void setup(@Qualifier("primaryDataSource") DataSource dataSource, AnotherObject o) { ... }

The fact that @Qualifier is a separate annotation prov ides even more benefits with regard to customization. User-defined annotations may also play the role of
qualifier in the autowiring process. The simplest way to accomplish this is to annotate the custom annotation with @Qualifier itself as a meta-annotation.

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.TYPE, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface VetSpecialty { ... }

Custom annotations may optionally include a value for matching by name but more commonly would be used as "marker" annotations or define a value that
prov ides some further meaning to the qualifier process. For example, the excerpt below depicts a field that should be autowired with a qualified candidate among
those that match by type.

@Autowired
@VetSpecialty("dentistry")
private Clinic dentistryClinic;

When using XML configuration for the target of this dependency resolution, 'qualifier' sub-elements may be added to the bean definition. In the next section on
component-scanning, a non-XML alternative will be presented.

<bean id="dentistryClinic" class="samples.DentistryClinic">
 <qualifier type="example.VetSpecialty" value="dentistry"/>
</bean>

To avoid any dependency on the @Qualifier annotation whatsoever, prov ide a CustomA utowireConfigurer bean definition within the Spring context and
register any custom annotation types directly :

<bean class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer">
 <property name="customQualifierTypes">
 <set>
 <value>example.VetSpecialty</value>
 </set>
 </property>
</bean>

Now that the custom qualifier has been explicitly declared, the @Qualifier meta-annotation is no longer required.

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.TYPE, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface VetSpecialty { ... }

On a related note, it is even possible to replace the @A utowired annotation itself when configuring the A utowiredA nnotationBeanPostProcessor.

<bean class="org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor">
 <property name="autowiredAnnotationType" value="example.Injected"/>
</bean>

In a majority of cases, the ability to define custom "marker" annotations combined with the options of matching by name or other semantic value should be
sufficient for achiev ing fine-grained control of the autowiring process. However, Spring also prov ides support for any number of arbitrary attributes on qualifier
annotations. For example, the following is a hypothetical example of a very fine-grained qualifier.

@SpecializedClinic(species="dog", breed="poodle")
private Clinic poodleClinic;

The custom qualifier implementation would define those attributes.

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.TYPE, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface SpecializedClinic {

 String species();

 String breed();

}

The custom qualifier's attributes can then match against 'attribute' sub-elements of the 'qualifier' annotation within the XML of a bean definition. These elements
are used to prov ide key/value pairs.

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

4 de 10 19/08/09 11:21

<bean id="poodleClinic" class="example.PoodleClinic">
 <qualifier type="example.SpecializedClinic">
 <attribute key="species" value="dog"/>
 <attribute key="breed" value="poodle"/>
 </qualifier>
</bean>

A ll of the autowiring demonstrated so far has been for single instances, but collections are supported as well. Any time it's necessary to get all Spring-managed
objects of a certain type within the context, simply add the @A utowired annotation to a strongly -typed Collection.

@Autowired
private List<Clinic> allClinics;

One final feature that is worth pointing out in this section is the use of autowiring in place of Spring's "Aware" interfaces. Prior to Spring 2.5, if an object requires
a reference to the Spring context's ResourceLoader, it can implement ResourceLoaderA ware thereby allowing Spring to prov ide this dependency v ia the
setResourceLoader(ResourceLoader resourceLoader) method. This same technique applies for obtaining a reference to the Spring-managed
MessageSource and even the A pplicationContext itself. For Spring 2.5 users, this behav ior is now fully supported through autowiring (note that the inclusion
of these Spring-specific dependencies should always be carefully considered and typically only used within "infrastructure" code that is clearly separated from
business logic).

@Autowired
private MessageSource messageSource;

@Autowired
private ResourceLoader resourceLoader;

@Autowired
private ApplicationContext applicationContext;

Auto-Detection of Spring Components

Beginning with version 2.0, Spring introduced the concept of "stereotype" annotations with the @Repository annotation serv ing as a marker for data access
code. Spring 2.5 adds two new annotations - @Service and @Controller - to complete the role designations for a common three-tier architecture (data access
objects, serv ices, and web controllers). Spring 2.5 also introduces the generic @Component annotation which the other stereotypes logically extend. By clearly
indicating application roles, these stereotypes facilitate the use of Spring AOP and post-processors for prov iding additional behav ior to the annotated objects
based on those roles. For example, Spring 2.0 introduced the PersistenceExceptionTranslationPostProcessor to automatically enable data access exception
translation for any object carry ing the @Repository annotation.

These same annotations can also be used in conjunction with another new feature of Spring 2.5: auto-detection of components on the classpath. A lthough XML
has traditionally been the most popular format for Spring metadata, it is not the only option. In fact, the Spring container's internal metadata representation is
pure Java, and when XML is used to define Spring-managed objects, those definitions are parsed and converted to Java objects prior to the instantiation process.
One significant new capability of Spring 2.5 is the support for reading that metadata from source-level annotations. The autowiring mechanisms described thus
far make use of annotation metadata for injecting dependencies but still require registration of at least a minimal "bean definition" in order to prov ide the
implementation class of each Spring-managed object. The component scanning functionality can remove the need for even that minimal bean definition in XML.

As seen above, Spring's annotation-driven autowiring can significantly reduce the amount of XML without sacrificing fine-grained control. The component
detection mechanism takes this even further. It is not necessary to completely supplant configuration in XML, rather the component scanning can operate
alongside XML metadata to simplify the overall configuration. This possibility of combining XML and annotation-driven techniques can lead to a well-balanced
approach as demonstrated by the 2.5 version of the PetC linic sample application. There, the infrastructural components (data source, transaction manager, etc)
are defined in XML along with externalized properties as described above. The data access tier objects are also defined partially in XML, but their configuration
also takes advantage of the @A utowired annotations to simplify the injection of dependencies. F inally , the web tier "controllers" are not explicitly defined in XML
at all. Instead the following configuration is used to trigger the auto-detection of all web controllers:

<context:component-scan base-package="org.springframework.samples.petclinic.web"/>

Notice that the 'base-package' attribute is prov ided. The default matching rules for component-scanning will recursively detect any of Spring's stereotype
annotations on classes within that package (multiple packages can be prov ided in a comma-separated list). Therefore, the various controller implementations for
the PetC linic sample application are all annotated with @Controller (one of Spring's built-in stereotypes). Here is an example:

@Controller
public class ClinicController {

 private final Clinic clinic;

 @Autowired
 public ClinicController(Clinic clinic) {
 this.clinic = clinic;
 }
 ...

Auto-detected components are registered with the Spring container just as if they had been defined in XML. A s depicted above, those objects can in turn make
use of annotation-driven autowiring.

The component scanner's matching rules can also be customized with filters for including or excluding components based on type, annotation, AspectJ
expression, or regular expressions for name patterns. The default stereotypes can also be disabled. For example, a test configuration may ignore the default
stereotypes and instead auto-detect any class whose name starts with Stub or which includes the @Mock annotation:

<context:component-scan base-package="example" use-default-filters="false">
 <context:include-filter type="aspectj" expression="example..Stub*"/>
 <context:include-filter type="annotation" expression="example.Mock"/>
</context:component-scan>

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

5 de 10 19/08/09 11:21

Type matching restrictions can be controlled with exclusion filters as well. For example, to rely on the default filters except for the @Repository annotation, then
add an exclude-filter.

<context:component-scan base-package="example">
 <context:exclude-filter type="annotation" expression="org.springframework.stereotype.Repository"/>
</context:component-scan>

C learly it is possible to extend the component scanning in a number of ways to register your own custom types. The stereotype annotations are the simplest
option, so the notion of stereotype is therefore extensible itself. A s mentioned earlier, @Component is the generic stereotype indicator that the @Repository,
@Service, and @Controller annotations "logically " extend. It just so happens that @Component can be prov ided as a meta-annotation (i.e. an annotation
declared on another annotation), and any custom annotation that has the @Component meta-annotation will be automatically detected by the default matching
rules of the scanner. An example will hopefully reveal that this is much simpler than it sounds.

Recall the hypothetical background task that was described in the section above covering the @PostConstruct and @PreDestroy lifecycle annotations.
Perhaps an application has a number of such background tasks, and those task instances would typically require XML bean definitions in order to be registered
with the Spring context and have their lifecycle methods invoked at the right time. W ith component scanning, there is no longer a need for those explicit XML
bean definitions. If the background tasks all implement the same interface or follow a naming convention, then include-filters could be used. However, an even
simpler approach is to create an annotation for these task objects and prov ide the @Component meta-annotation.

@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface BackgroundTask {
 String value() default "";
}

Then prov ide the custom stereotype annotation in any background task 's class definitions.

@BackgroundTask
public class FilePoller {

 @PostConstruct
 public void startPolling() {
 ...
 }

 @PreDestroy
 public void stopPolling() {
 ...
 }
 ...
}

The generic @Component annotation could just as easily have been prov ided instead, but the custom annotation technique prov ides an opportunity for using
meaningful, domain-specific names. These domain-specific annotations then prov ide further opportunities such as using an AspectJ pointcut expression to
identify all background tasks for the purpose of adding adv ice that monitors the activ ity of those tasks.

By default, when a component is detected, Spring will automatically generate a "bean name" using the non-qualified class name. In the prev ious example, the
generated bean name would be "filePoller". However, for any class that is annotated with one of Spring's stereotype annotations (@Component, @Repository,
@Service, or @Controller) or any other annotation that is annotated with @Component as a meta-annotation (such as @BackgroundTask in the above
example), the 'value' attribute can be explicitly specified for the stereotype annotation, and the instance will then be registered within the context with that value
as its "bean name". In the following example the name would be "petC linic" instead of the default generated name of "simpleJdbcC linic".

@Service("petClinic")
public class SimpleJdbcClinic {
 ...
}

Likewise, the bean name generated for the following rev ised version of the FilePoller would be "poller" instead of "filePoller".

@BackgroundTask("poller")
 public class FilePoller {
 ...
}

While all Spring-managed objects are treated as singleton instances by default, it is sometimes necessary to specify an alternate "scope" for an object. For
example, in the web-tier a Spring-managed object may be bound to 'request' or 'session' scope. As of version 2.0, Spring's scope mechanism is even extensible so
that custom scopes can be registered with the application context. W ithin an XML configuration, it's simply a matter of including the 'scope' attribute and the
name of the scope.

<bean id="shoppingCart" class="example.ShoppingCart" scope="session">
 ...
</bean>

With Spring 2.5, the same can be accomplished for a scanned component by prov iding the @Scope annotation.

@Component
@Scope("session")
public class ShoppingCart {
 ...
}

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

6 de 10 19/08/09 11:21

One final topic to address here is the simplification of qualifier annotations when using component-scanning. In the prev ious section, the following object was
used as an example of autowiring with a custom qualifier annotation:

@VetSpecialty("dentistry")
private Clinic dentistryClinic;

That same example then featured use of a 'qualifier' element within the XML on the intended target bean definition for that dependency . When using
component-scanning, the XML metadata is not necessary . Instead, the custom qualifier may be included as a type-level annotation in the target class definition.
An alternative example with a scanned @Repository instance as the dependency would thus appear as follows:

@Repository
@VetSpecialty("dentistry")
public class DentistryClinic implements Clinic {
 ...
}

Finally , for the prev ious example that featured custom qualifier annotations with attributes, the non-XML equivalent for that dependency 's target would be:

@Repository
@SpecializedClinic(species="dog", breed="poodle")
public class PoodleClinic implements Clinic {
 ...
}

Conclusion

Spring 2.5 offers significant new functionality in a number of areas. The primary focus of this article has been on simplify ing configuration by harnessing the
power of Java annotations. Spring supports 'Common Annotations' as defined in JSR-250 while prov iding additional annotations for even more fine-grained
control of the autowiring process. Spring 2.5 also extends the 'stereotype' annotations that began with Spring 2.0's @Repository, and all of these stereotypes
can be used in conjunction with the new component-scanning functionality . XML-based configuration is still fully supported, and Spring 2.5 introduces a new
'context' namespace that offers more concise syntax for common configuration scenarios. In fact, the support for seamlessly combining XML and
annotation-based configuration enables a well-balanced overall approach. Complex configuration of infrastructure can be defined in modular XML files while the
progressively higher layers of an application stack can benefit from more annotation-based techniques - all within the same Spring 2.5 application context.

Stay tuned for the next article in this series, which will cover powerful new annotation-based functionality in the Spring web tier.

Bookmark digg+, reddit+, del.icio.us+, dzone+, facebook+ slashdot+

Watch Thread Reply

Sort by date descending

There seems to be a fair amount of missing or hidden XML in this article. If you look at the HTML source, you'll see where some XML has not been properly
escaped.

Matt, You are right. Someone must have edited this recently , because the XML was showing up properly before. I just sent a mail to the editor. Thanks, Mark

23 com m ents

Missing/hidden XML by Matt Raible Posted Nov 19, 2007 9:51 PM

Re: Missing/hidden XML by Mark Fisher Posted Nov 19, 2007 10:32 PM

Re: Missing/hidden XML by Diana Plesa Posted Nov 20, 2007 3:05 AM

Re: Missing/hidden XML by mohan raj Posted Nov 29, 2007 5:11 AM

Good Stuff by Ray Krueger Posted Nov 20, 2007 8:01 AM

Re: Good Stuff by Mark Fisher Posted Nov 20, 2007 8:35 AM

Re: Good Stuff by Darryl Pentz Posted Mar 4, 2008 2:53 PM

Re: Good Stuff by Archie Cobbs Posted May 12, 2008 9:40 AM

Grate Guice alternative by Tom Nichols Posted Nov 20, 2007 8:11 AM

Annotations vs. XML by Geoffrey Wiseman Posted Nov 20, 2007 8:47 AM

Re: Annotations vs. XML by Rod Johnson Posted Nov 20, 2007 4:47 PM

Re: Annotations vs. XML by Jörg Gottschling Posted Nov 23, 2007 1:30 AM

Re: Annotations vs. XML by Rod Johnson Posted Nov 26, 2007 2:34 PM

lament the passing of design and OO programming by James Richardson Posted Nov 27, 2007 6:05 PM

Great Job by Khaled Habiburahman Posted Nov 28, 2007 2:39 AM

Re: Great Job by mohan raj Posted Nov 29, 2007 5:12 AM

the 2nd part and 3rd part by Nantian Lotus Posted Feb 5, 2008 8:43 AM

Re: the 2nd part and 3rd part by Lou Sacco Posted Mar 27, 2008 2:06 PM

2nd and 3rd parts by Gregor Morrison Posted Jun 3, 2008 4:58 AM

Re: 2nd and 3rd parts by Mohammad Naqvi Posted Aug 21, 2008 1:38 PM

the last part by john wang Posted Sep 8, 2008 3:38 PM

Re: the last part by Lukasz Budnik Posted Nov 19, 2008 6:00 AM

Re: 2nd and 3rd parts by Johan Pelgrim Posted Dec 10, 2008 6:03 AM

Missing/hidden XML

Re: Missing/hidden XML

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

7 de 10 19/08/09 11:21

Hi Matt, Mark The XML has been fixed now. Best Diana

I am really look ing forward to using these new features, great job guys. By the way Mark , your sudden and unexplained use of the p: namespace might freak
people out. In your explanation of the lifecy cle annotations you declare the datasource using the p: namespace trick from http://blog.interface21.com
/main/2006/11/25/xml-syntax-sugar-in-spring-20/ Unfortunately , many people probably aren't aware of this feature and it isn't actually mentioned in the article.

This is great -- I always liked the annotation-driven sty le of Guice but didn't want to abandon Spring just for that. Hooray for less XML!

Ray , Thanks for pointing out that blog for the 'p' namespace. Hopefully that will serve as a 'footnote' now for anyone who may be confused by its usage.
Those examples are taken directly from the PetC linic application by the way . Thanks, Mark

I have to admit, I'm content to use XML for wiring, myself -- although perhaps when I try the annotations, I'll discover more advantages than I expect. I seem
to be in the minority here. That said, I was more impressed by the features here than I expected to be, so next time I start some Spring config., I might give
this a try . Sorry about the XML; that might have been my fault, I changed some metadata after the initial publishing, and there are some quirks in the
publishing process that Diana's better at handling. ;) I'm look ing forward to the next two parts of the article.

Geoffrey

I have to admit, I'm content to use XML for wiring, myself -- although perhaps when I try the annotations, I'll discover more advantages than I expect. I
seem to be in the minority here.

The goal of Spring is to be the ultimate component model. That component model can be configured in different ways. There is no perfect one size fits all
approach to configuration. Different contributions are merged together by the container. Certainly , annotations have an important place. However, my
experience in practice (long predating my creation of Spring) has been that you need to externalize significant parts of your configuration from Java code. The
annotation support in Spring 2.5 is very slick and definitely makes Spring a better product. You can mix and match annotation-driven and XML (and other)
configuration so that you can use the appropriate solution for each problem. I'm proud that each version of Spring has made applications easier to build. I
recently presented on Configuring the Spring Container at QCon San Francisco, discussing alternative configuration options and best practices. The slides are
available as PDF.

The annotation @Resource is a little confusing in the context of spring. As I saw it I first thought it will be used for ressources and not for beans. Like that:
@Ressource("file:out/example.txt") public void setOutput(Ressource ressource) {...}

Jorg I agree that @Resource is a poor name for the annotation, but we didn't choose it... Rgds Rod

Re: Missing/hidden XML

Good Stuff

Grate Guice alternative

Re: Good Stuff

A nnotations vs. XML

Re: A nnotations vs. XML

Re: A nnotations vs. XML

Re: A nnotations vs. XML

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

8 de 10 19/08/09 11:21

as now i can turn every thing into a FactoryBeanImpl. @Bonkers(Retention.FORALLTIME) afterPropertiesSet()

Great Job, keep it up Thanks

Good Artical...

O f course...Great

Good material. But where can I find the 2nd part and 3rd part of this series. Thanks.

Not to mention how it's never mentioned how to actually create an instance of the object that is injected by Spring. We see the annotated class, and the
configuration XML, but no idea how to construct an instance of the annotated class. Does it appear as if by magic? Is it just me, but why are there no examples
of this. Every thing is just assumed to originate as some implicit class of the Spring framework , like a controller or some such. I'd like to use this uber-magic of
Spring, but how do I create instances of my own 'controller-type' classes automagically injected by Spring. Is this a state secret perhaps? Sorry , just frustrated
by the lack of examples, clearly .

Agreed...this would be very useful.

Darry l Pentz writes:

Not to mention how it's never mentioned how to actually create an instance of the object that is injected by Spring. We see the annotated class, and the
configuration XML, but no idea how to construct an instance of the annotated class. Does it appear as if by magic?

I had the same question the first time I read this article (too quick ly). The answer lies in the "Auto-Detection of Spring Components". The key "magic" is this
tag:

<context:component-scan ... />

which causes Spring to automatically go hunting through your JARs look ing for specially -annotated classes. When it finds them, it auto-constructs instances
and adds them to your application context. The net effect is a purely annotation-driven (zero XML) way to add and configure indiv idual beans.

lament the passing of design and OO programming

Great Job

Re: Missing/hidden XML

Re: Great Job

the 2nd part and 3rd part

Re: Good Stuff

Re: the 2nd part and 3rd part

Re: Good Stuff

2nd and 3rd parts

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

9 de 10 19/08/09 11:21

Mark , great work , are parts 2 and 3 available yet?

Hey Greg, Did you hear any thing about the 2nd and 3rd parts yet?

"While all Spring-managed objects are treated as singleton instances by default, it is sometimes necessary to specify an alternate "scope" for an object. " I
believe with the @PostConstruct @PreDestroy , the default should change to "request" or "prototype", not singleton any more... otherwise it is very possibly
not thread-safe.... And is there any plan to support more lifecycle/AOP like annoations? like @PreInvoke @PostInvoke....

I wrote a series of posts called "Spring for JEE developers" I describe some of Spring 2.5 new features like partial implementations of JSR 220 and JSR 250. If
someone is interested here they are: http://jee-bpel-soa.blogspot.com/2008/11/spring-for-jee-developers-jsr-250.html http://jee-bpel-soa.blogspot.com
/2008/11/spring-for-jee-developers-jpa.html http://jee-bpel-soa.blogspot.com/2008/11/spring-for-jee-developers-stateless-ejb.html best regards

Here's the second part (haven't found the third part yet) http://www.infoq.com/articles/spring-2.5-ii-spring-mvc

InfoQ.com and all content copyright © 2006-2009 C4Media Inc. InfoQ.com hosted at Contegix, the best ISP we've ever worked with. Privacy policy

Re: 2nd and 3rd parts

Aug 21, 2008 1:38 PM by

the last part

Re: the last part

Re: 2nd and 3rd parts

InfoQ: What's New in Spring 2.5: Part 1 http://www.infoq.com/articles/spring-2.5-part-1

10 de 10 19/08/09 11:21

